Asymptotic linear bounds of Castelnuovo–Mumford regularity in multigraded modules
نویسندگان
چکیده
منابع مشابه
Uniform Bounds on Multigraded Regularity
We give an effective uniform bound on the multigraded regularity of a subscheme of a smooth projective toric variety X with a given multigraded Hilbert polynomial. To establish this bound, we introduce a new combinatorial tool, called a Stanley filtration, for studying monomial ideals in the homogeneous coordinate ring of X . As a special case, we obtain a new proof of Gotzmann’s regularity the...
متن کاملCharacteristic-free bounds for the CastelnuovoMumford regularity
We study bounds for the Castelnuovo–Mumford regularity of homogeneous ideals in a polynomial ring in terms of the number of variables and the degree of the generators. In particular, our aim is to give a positive answer to a question posed by Bayer and Mumford in What can be computed in algebraic geometry? (Computational algebraic geometry and commutative algebra, Symposia Mathematica, vol. XXX...
متن کاملRegularity and Resolutions for Multigraded Modules
This paper is concerned with the relationships between two concepts, vanishing of cohomology groups and the structure of free resolutions. In particular, we study the connection between vanishing theorems for the local cohomology of multigraded modules and the structure of their free multigraded resolutions.
متن کاملMinimal Free Resolutions and Asymptotic Behavior of Multigraded Regularity
Let S be a standard N-graded polynomial ring over a field k, let I be a multigraded homogeneous ideal of S, and let M be a finitely generated Z-graded Smodule. We prove that the resolution regularity, a multigraded variant of CastelnuovoMumford regularity, of IM is asymptotically a linear function. This shows that the well known Z-graded phenomenon carries to the multigraded situation.
متن کاملUpper Bounds for Betti Numbers of Multigraded Modules
This paper gives a sharp upper bound for the Betti numbers of a finitely generated multigraded R-module, where R = k[x1, . . . , xm] is the polynomial ring over a field k in m variables. The bound is given in terms of the rank and the first two Betti numbers of the module. An example is given which achieves these bounds simultaneously in each homological degree. Using Alexander duality, a bound...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2016
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2015.07.040